Constraints on quantificational domains: generic plural des-indefinites in French

Carmen Dobrovie-Sorin
CNRS - Paris VII
sorin@linguist.jussieu.fr

Alda Mari
CNRS - Institut Jean Nicod
Alda.Mari@ens.fr

The current literature on pluralities is mainly concerned with definite plurals in existential contexts and the implicit assumption is that indefinite plurals are to be analyzed in the same way, as sums of individuals. We argue that although plural indefinites can be modeled as sums of individuals in those contexts in which they are bound by existential closure, they cannot do so when they are bound by an adverbial quantifier; in the latter context, plural indefinites can only be modeled as groups. This constraint, which follows from Quine’s individualization condition on quantification, will allow us to account for the behavior of French plural indefinites headed by des (‘some’).

1. Generic plural indefinites and adverbial quantification over groups. The first fact to be explained is the impossibility of the example (1). The commonly assumed explanation is pragmatic (Corblin, 1987; Krifka et al., 1995): (1) is blocked because the generalization can be more directly expressed by using the corresponding example with a singular indefinite (2). Dobrovie-Sorin and Laca (2002) have suggested that the ungrammaticality of (1) results from a mismatch between the value of the variable in the restriction of the Q-adverb (pluralities) and the value of the variable in the nuclear scope (atomic individuals). Note that, in these cases, we are assuming, following (Chierchia 1995, among many others), that GEN directly binds individual variables supplied by the indefinites (‘truly-generic-indefinites’ henceforth), as in (3). (We leave aside pseudo-generic indefinites, which rely on generic quantification over events: in (9), the presence of a modifier introduces an event argument that gets bound by the the quantifier).

2. Sums: distributive perdication vs. quantification over their members. The proposal summarized above seems problematic, since plural indefinites normally allow distributive predication over their members (4). In order to solve this problem we need to refine the notion of "plurality" by clearly distinguishing between sums and groups. Our claim is that whereas non-generic plural indefinites (4) can be represented as sums, generic plural indefinites (1) can only be represented as groups. Following Link (1984) and Landman (2000) we will be assuming that sums are derived entities whose members can be accessed, whereas groups are primitive entities such that their members cannot be accessed.

We still need to understand why the GEN operator cannot have access to the members of the sum and the LF in (5) cannot be assigned to (1). The illegitimate status of this LF can be explained as follows: because a binary quantifier (the GEN operator in particular) denotes the relation between two sets, the cardinality of each of the sets must be fixed (although not necessarily known), a constraint that cannot be satisfied by the set corresponding to a random sum (since one cannot state precisely, which, among all possible sums has been picked out). Our proposal extends to quantification in non-generic contexts, as shown in (6), which contrasts with (4). The example (4) is grammatical because the members of the sum are accessible for distributive predication, which is not sensitive to the cardinality of the set: any predicate that may apply distributively to a plurality will do so regardless of the number of elements contained in a plurality. In (6), instead, quantification is forced by the presence of a floated quantifier, and ungrammaticality results. In sum, the contrast between (4) and (6) indicates that the distributivity observed in (4), which is an effect of a pluralized predicate applying to a sum, does not extend to quantification. We will argue that maximal sums (7) (unlike random sums) allow quantification over their members (because they are stable and have a fixed cardinality).

3. Generic Quantification over Groups. Sums are not individualizable and as such they cannot be quantified over (since quantification requires individuability (Quine, 1953)). This explains why an example such as (9b), represented as in (9b), is ill-formed. It follows from the definition of sums that any pluralized nominal predicate, in particular bébés, may denote a sum of individuals. Only certain nominal predicates may, when pluralized, provide descriptions for groups: besides singular collectives, symmetrical nouns can do so (e.g. Moltmann, 1997). The example in (8a) is grammatical because jumeaux is a symmetrical noun, which is able to supply the description of a group-variable. In sum, plural indefinites
can take 'truly generic' readings only if they can be represented as groups bound by Q-adverbs (in particular by GEN), which yields generalizations over groups. Because access to the members of groups is blocked, plural indefinites bound by Q-adverbs cannot express generalizations over atomic individuals.

4. **Kein vs keine.** Kratzer (1995) observes that - but does not explain why - the negative plural indefinite *keine* (unlike sg. indef. *kein*) cannot function as a quantifier, but must be bound by existential closure. The restriction on *keine* *N* is expected under our analysis, if we take it to be the negative counterpart of French *des* indefinites: just like *des*-indefinites, *keine*-indefinites are expected to be ungrammatical whenever quantification over atomic individuals is forced. Our account predicts the grammaticality of German examples such as 'keine Nachbarstaaten kommen gut miteinander aus', which involves quantification over pairs.

Data

\[\begin{array}{l}
(1) \quad *\text{Des carrés ont quatre côtés / 'des' squares have four sides} \\
(2) \quad \text{Un carré a quatre côté / a square has four sides} \\
(3) \quad \# \text{GEN } X (X \text{ is a plurality of squares}) [x \text{ has four sides}] \\
(4) \quad \text{Pendant l’excursion, des enfants étaient trop fatigues pour marcher / During the trip, 'des' children were too tired to walk} \\
(5) \quad \text{GEN } x (x \text{ is an atom of any/a random sum of squares}) [x \text{ has four sides}] \\
(6) \quad *\text{Pendant l’excursion, des enfants étaient chacun/tous trop fatigués pour marcher / During the trip, 'des' children were all too tired to walk} \\
(7) \quad \text{Pendant l’excursion, les enfants étaient tous trop fatigués pour marcher / During the trip, 'les' children were all too tired to walk} \\
(8) \quad \text{a. Des jumeaux se ressemblent dans les moindres détails / 'des' twins look alike down to the smallest details} \\
\quad \text{b. (#)Des bébés se ressemblent dans les moindres détails / 'des' babies ... (only existential)} \\
(9) \quad \text{a. GEN } X (X \text{ is a group of twins}) [X \text{ look alike}] \\
\quad \text{b. \# GEN } X (X \text{ is a sum of babies}) [X \text{ look alike}] \\
\end{array}\]

A note on pseudo-generic plural indefinites.

\[\begin{array}{l}
(10) \quad \text{Des éléphants blancs se promenant dans la rue ont toujours suscité la curiosité / white elephants strolling in the street always arouse curiosity} \\
(11) \quad \text{GEN } e (\text{stroll in the street (e, f(e))} \land \text{white elephants (f(e))}) \text{[arouse curiosity (e,f(e))]} \\
\end{array}\]

In (10), the plural indefinite is indirectly bound by a quantifier over events (Rooth, 1995; De Swart 1991, 1996), in which case it can be represented as an event-dependant Skolem term (10). Time permitting, we will argue that the number neutralization observed by Corblin (1987) cannot arise for truly generic, but only for pseudo-generic plural indefinites: number neutralization is an effect of counting events rather than participants, which can vary from one event to the other.

References

- Carlson, Gregory N. (1977a): Reference to kinds in English, Diss., University of Massachusetts.